An unstrained homoallylic secondary adamantyl toluene-p-sulfonate solvolyses with σ-bond migration to give a protoadamantyl substituted allylic carbenium ion

X icai H uang and A ndrew J. Bennet*
Department of Chemistry, Simon Fraser University, Burnaby, British C olumbia, Canada V5A 1S6

Abstract

The aqueous ethanolysis of 4 -adamantylidene $\mathbf{2}_{\mathrm{ax}}$-adamantyl toluene-p-sulfonate (tosylate) (1 a -0Ts) shows a sensitivity (m value) of 0.86 ± 0.05 to the ionizing power of the solvent. 1a-OTs reacts approximately 4.7 -fold faster than 2-adamantyl tosylate in $80: 20 \mathrm{v} / \mathrm{v}$ ethanol-water at $25{ }^{\circ} \mathrm{C}$. The solvolysis reactions of la-OTs result in complete ($>95 \%$) rearrangement of the substituted adamantyl ring into a protoadamantyl ring via a solvent-equilibrated allylic carbenium ion intermediate. The extrapolated α-secondary deuterium kinetic isotope effect for solvolysis of $1 \mathrm{a}-0 \mathrm{Ts}$ in $60: 40 \mathrm{v} / \mathrm{v}$ ethanolwater at $25^{\circ} \mathrm{C}$ is 1.16 ± 0.02, while comparable values for solvolysis of the epimeric $\mathbf{2}_{\text {eq }}$ tosylate 1 e -OTs measured in several ethanol-water mixtures at $25{ }^{\circ} \mathrm{C}$ fall in the range 1.14-1.17. These results are consistent with a 1a-OTs solvolysis reaction transition state that involves concerted σ-bond participation and departure of the tosylate leaving group.

Introduction

Recent results have shown that the homoallylic adamantylideneadamantyl tosylate ($\mathbf{1 e} \mathbf{0} \mathbf{0} \mathbf{T s}$) solvolyses between 2×10^{5} and 4×10^{6} faster than 2 -adamantyl tosylate in reactions run at $25^{\circ} \mathrm{C}$ in various aqueous solvent mixtures of methanol, ethanol, propan-2-ol or acetone. ${ }^{1} \mathrm{~A}$ reduction of approximately $7.7 \mathrm{kcal} \mathrm{mol}^{-1}(1 \mathrm{cal}=4.184 \mathrm{~J})$ in the activation enthalpy $\left(\Delta \mathrm{H}^{\ddagger}\right)$ for the solvolysis in 80% ethanol-water accounts for the observed rate acceleration that occurs upon addition of the homoallylic adamantylidene group. ${ }^{1}$ In a similar study by Takeuchi et al., solvolysis of the methylidene-substituted adamantyl tosylate $\mathbf{2 e} \mathbf{e} \mathbf{0} \mathbf{~ T s}$ in both methanol and trifluoroetha-

1a
$X=O T s$
$\mathrm{X}=\mathrm{OH}$
$\mathrm{X}=\mathrm{OEt}$

2a
$\mathrm{X}=\mathrm{OT}$ s

1 e
$\mathrm{X}=\mathrm{OTs}$
$\mathrm{X}=\mathrm{OH}$
$\mathrm{X}=\mathrm{OEt}$
$\mathrm{X}=\mathrm{Br}$

2e
$X=O T s$
nol gave the much smaller rate accelerations of 16 and 30 , respectively. ${ }^{2}$ A queous ethanolysis of $\mathbf{l e - O T s}$ yields $\mathbf{l e - O H}$ and $\mathbf{l e}-\mathbf{0 E t}$, two products that are formed with complete retention of stereochemistry. ${ }^{1}$ Based on this stereochemical result, the solvolysis of $\mathbf{l e} \mathbf{- 0} \mathbf{T s}$ was proposed to proceed through the homoallylic carbenium ion 3-A d. Similarly, the three products 2e- $\mathbf{O C H}_{3}, \mathbf{6}-\mathrm{OCH}_{3}$ and $\mathbf{7 - 0} \mathrm{CH}_{3}$ formed in the methanolysis of $\mathbf{2 e - 0} \mathbf{T s}$ are consistent with this reaction proceeding via the homoallylic carbenium ion 3-CH2 (Scheme 1). ${ }^{2}$
In contrast, solvolysis reactions involving the epimeric methylidene-substituted adamantyl tosylate 2a-0 Ts are slower

[^0]
than the corresponding reactions of 2-adamantyl tosylate ${ }^{2}$ The four isolated products from 2a-0 Ts methanolysis are consistent with the formation of two equilibrating carbenium ions, $4-\mathrm{CH}_{2}$ and $5-\mathrm{CH}_{2}$, and the partial conversion of $4-\mathrm{CH}_{2}$ to the bicyclobutenium ion 3-CH2 (Scheme 2). ${ }^{2}$
The following report is an investigation of solvolysis reactions involving the 'pseudo-axial' adamantylideneadamantyl tosylate 1a-0 Ts, with particular focus on the nature of the carbenium ion intermediates formed during these reactions.

Experimental

M aterials and methods

Ethanol was dried by distillation from magnesium ethoxide. A 'M illi-Q ultra pure water' system was utilized as an additional purification treatment for de-ionized water. NMR spectra were run on either a Bruker AMX-400 or a Bruker AM X600 spectrometer, using CDCl_{3} as the solvent and as the internal reference (J values are given in Hz). M ass spectra were acquired on a H ewlett Packard 5985 mass spectrometer using

Scheme 2
electron impact ionization (70 eV). All melting points are uncorrected.
(1R*,2S*)-2-H ydroxy-4-tricyclo[3.3.1.1 $1^{3,7}$]dec-2-ylidene-
tricyclo[3.3.1.1.1 ${ }^{3,7}$]decane (1a-OH). Lithium aluminium hydride $(0.4 \mathrm{~g})$ was added in one portion with stirring to a solution of 2 -oxo-4-tricyclo[3.3.1.1 $1^{3,7}$]dec-2-ylidenetricyclo[3.3.1.1 ${ }^{3,7}$]decane ${ }^{3} 10(1.0 \mathrm{~g}, 3.5 \mathrm{mmol})$ in dry diethyl ether ($40 \mathrm{~cm}^{3}$). Stirring was continued for 10 min , at which point the excess lithium aluminium hydride was destroyed by the careful addition of water. The ethereal layer was washed with dilute hydrochloric acid and brine, dried and evaporated to dryness. F lash chromatography of the mixture using silica gel with ethyl acetatehexane ($5 \% \mathrm{v} / \mathrm{v}$) as the eluent gave the 2R isomer 1e-0H (0.67 $\mathrm{g}, 66 \%$) and the required 2 S isomer $\mathbf{1 a - 0 H (0 . 3 5 \mathrm { g } , 3 4 \%) ; \mathrm { mp }}$ $167-168{ }^{\circ} \mathrm{C}$ (recrystallized from aqueous methanol) (Found: C, 84.3; $\mathrm{H}, 10.0 . \mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}$ requires $\left.\mathrm{C}, 84.45 ; \mathrm{H}, 9.9 \%\right) ; \delta_{\mathrm{H}}(400$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) 1.60-2.02 ($23 \mathrm{H}, \mathrm{m}$), $2.85(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.94(1 \mathrm{H}$, br s), $2.99(2 \mathrm{H}, \mathrm{br}$ s) and 3.79-3.85 ($1 \mathrm{H}, \mathrm{m}$).
(1R*,2S*)-2-Tosyl-4-tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2-ylidenetricyclo-
[3.3.1.1 $\mathbf{1}^{3,7}$]decane (1a-OTs). A solution of the 2 S alcohol 1a- $\mathbf{O H}(0.2 \mathrm{~g} ; 0.7 \mathrm{mmol})$ and tosyl chloride ($1.0 \mathrm{~g} ; 5.2 \mathrm{mmol}$) in pyridine ($10 \mathrm{~cm}^{3}$) was stirred at room temp. for 3 d . M ethanol ($40 \mathrm{~cm}^{3}$) was added and the resulting solution was cooled to $-5^{\circ} \mathrm{C}$ overnight. The resulting colourless crystals ($0.21 \mathrm{~g} ; 68 \%$) were collected by filtration. $\mathrm{Mp} 179-180^{\circ} \mathrm{C}$ (Found: C, 73.8 ; $\mathrm{H}, 7.8 . \mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{~S}$ requires $\left.\mathrm{C}, 73.9 ; \mathrm{H}, 7.8 \%\right) ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) 1.55-1.92 (20 H, m), 1.92-2.00 ($1 \mathrm{H}, \mathrm{m}$), 2.00-2.05 (1 $\mathrm{H}, \mathrm{m}), 2.44(3 \mathrm{H}, \mathrm{s}), 2.68(1 \mathrm{H}, \mathrm{br}$ s), 2.82-2.90(2H,m), $2.96(1$ H, br s), $4.68(1 \mathrm{H}, \mathrm{m}), 7.30(2 \mathrm{H}, \mathrm{m})$ and $7.78(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{c}}(100$ $\mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) $21.6,26.9,28.4,28.45,30.8,32.0,32.3,33.1$ (2 C), $36.2,36.7,37.2,38.4,38.8,39.2,39.4,39.6,39.7,86.8,126.6$, $127.5,129.6,135.0,138.2$ and $144.0 ; \mathrm{m} / \mathrm{z} 438\left(\mathrm{M}^{+}, 100 \%\right), 439$ (32.2), 440 (9.2), 441 (2.1).

(1R*,2S*)-2-E thoxy-4-tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2-ylidene-

tricyclo[3.3.1.1 ${ }^{3,7}$]decane (1a-0 Et). Sodium hydride (100 mg) and 18 -crown- $6(50 \mathrm{mg})$ were added to a solution of the alcohol $\mathbf{1 a - O H}(34 \mathrm{mg})$ in ethyl bromide $\left(2 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temp. for 18 h . At the end of this time period, ethyl acetate was added to the mixture and the excess sodium hydride was destroyed by the addition of water. The organic layer was washed with water, dried and evaporated to dryness. F lash chromatography using silica gel and the eluent hexane followed by ethyl acetate-hexane ($5 \% \mathrm{v} / \mathrm{v}$) gave 1a-OEt (14 mg , 38%); mp $86-87^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 84.6$; $\mathrm{H}, 10.3 . \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}$ requires C, 84.6; H, 10.3\%); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right.$) 1.16 ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7$), 1.53-2.01 ($22 \mathrm{H}, \mathrm{m}$), 2.81(1 H, br s), 2.85 (1 H, br s), $2.90(1 \mathrm{H}$, br s), $3.09(1 \mathrm{H}, \mathrm{br}$ s), 3.29-3.39 ($1 \mathrm{H}, \mathrm{m}$) and 3.46-3.55 (2 H , m); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right) 15.7,27.9,28.6,28.7,31.4,32.3$ (2 C), $33.0,33.5,35.5,36.6,37.4,38.4,39.2,39.5,39.55,39.8,39.9$, 62.4, 82.8, 129.5, 135.8.
(1R*,2R*)-2-D euterio-2-hydroxy-4-tricyclo[3.3.1.1 ${ }^{3,7}$]dec2 -ylidenetricyclo[3.3.1.1 ${ }^{3,7}$]decane ($\left[^{2} \mathrm{H}_{1}\right] \mathrm{le}-\mathrm{OH}$) and ($1 \mathrm{R}^{*}$, 2S*)-2-deuterio-2-hydrox y-4-tricyclo[3.3.1.1 ${ }^{1,7}$]decan-2-ylidenetricyclo[3.3.1.1 $\left.1^{3,7}\right]$ decane ($\left[{ }^{2} \mathrm{H}_{1}\right]$ la-O H). The compounds $\left[{ }^{2} \mathrm{H}_{1}\right]$ $\mathbf{1 a - O H}$ and $\left[{ }^{2} \mathrm{H}_{1}\right] \mathbf{l e - O H}$ were synthesized by reduction of
ketone $\mathbf{1 0}$ using lithium aluminium deuteride in a procedure that is analogous to the reaction with lithium aluminium hydride reported above.
(1R*,2S*)-2-D euterio-2-tosyl-4-tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2ylidenetricyclo[3.3.1.1 $\left.{ }^{3,7}\right]$ decane ($\left[^{2} \mathrm{H}_{1}\right] 1 \mathrm{a}-\mathrm{OTs}$). Synthesis of $\left[{ }^{2} \mathrm{H}_{1}\right]$ la- O Ts employed a procedure that was analogous to that for la-0Ts reported above; mp $179-180^{\circ} \mathrm{C}$. The peaks observed in the ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}$) spectrum of $\left[{ }^{2} \mathrm{H}_{1}\right]$ -1a-O Ts corresponded to those seen in the spectrum of 1a-OTs, except that the peak at $\delta 4.86$ was absent; $\mathrm{m} / \mathrm{z} 439$ ($\mathrm{M}^{+}, 100 \%$), 440 (29.5), 441 (10.4), 442 (2.0).
(1R*,2R*)-2-D euterio-2-tosyl-4-tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2ylidenetricyclo $\left[3.3 .1 .1^{3,7}\right]$ decane ($\left[{ }^{2} \mathrm{H}_{1}\right] \mathrm{le}-\mathrm{OTs}$). A solution of hydrogen bromide in dichloromethane ($30 \mathrm{~cm}^{3}$) was generated by the in situ reaction of acetyl bromide ($1.0 \mathrm{~cm}^{3}, 13.5 \mathrm{mmol}$) and methanol ($0.54 \mathrm{~cm}^{3}, 13.3 \mathrm{mmol}$). This solution was cooled to $0^{\circ} \mathrm{C}$ and the deuteriated alcohol $\left[{ }^{2} \mathrm{H}_{1}\right] \mathbf{l e - O H}(0.16 \mathrm{~g}, 0.56$ mmol) was added in one portion. A fter stirring the reaction mixture for 60 min , the solvent was removed under reduced pressure. Purification of the residue using flash chromatography on silica gel with hexane as the eluent gave $\left[{ }^{2} \mathrm{H}_{1}\right]$ le- Br as a white solid ($0.18 \mathrm{~g}, 90 \%$). All physical properties of the deuteriated material were identical with those of the non-deuteriated compound $\mathbf{l e}-\mathbf{B r}{ }^{1}$ A published procedure was followed for the treatment of $\left[{ }^{2} \mathrm{H}_{1}\right] \mathrm{e}-\mathrm{Br}(0.13 \mathrm{~g})$ with silver tosylate $(0.30$ g) which gave the deuteriated tosylate $\left[{ }^{2} \mathrm{H}_{1}\right] 1 \mathrm{e}-\mathbf{0} \mathrm{Ts}(0.16 \mathrm{~g}$, 58%); mp $155-156^{\circ} \mathrm{C}$ (decomp.) [lit., $\mathbf{l e - 0} \mathrm{Ts},{ }^{1}{ }^{1} 147-148{ }^{\circ} \mathrm{C}$ (decomp.)]. The peaks observed in the ${ }^{1} \mathrm{H}$ NMR (400 MHz ; CDCl_{3}) spectrum of $\left[{ }^{2} \mathrm{H}_{1}\right]$ le- 0 Ts corresponded to those seen in the spectrum of $\mathbf{1 e}-\mathbf{0} \mathbf{T s},{ }^{1}$ except that the peak at $\delta 4.35$ was absent.
($\mathbf{R R}^{*}, 4 \mathbf{R}^{*}$)-4-(2-H ydroxyethoxy)-5-tricyclo[3.3.1.1 ${ }^{3,7}$]dec-2ylidenetricyclo[4.3.1.0 ${ }^{3,8}$] decane (11-0 $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$). A mixture of the tosylate 1a-0 Ts (2.0 g) and sodium hydrogen carbonate (0.5 g) in ethane-1,2-diol ($100 \mathrm{~cm}^{3}$) was heated at $125^{\circ} \mathrm{C}$ for 3 h . Evaporation of the solvent under vacuum (1 mmH g; $100^{\circ} \mathrm{C}$) gave a solid residue which was subsequently dissolved in ethyl acetate ($100 \mathrm{~cm}^{3}$). The solution was washed with both water and a saturated solution of sodium hydrogen carbonate, dried and evaporated to give a crude preparation of $11-\mathbf{O ~ H}_{2} \mathrm{CH}_{2} \mathbf{0 ~ H}(1.58 \mathrm{~g})$. Recrystallization of the crude product (0.5 g) from ethanol-water at ambient temperature gave an analytically pure sample (0.38 g); mp 88-89 ${ }^{\circ} \mathrm{C}$ (F ound: $\mathrm{C}, 80.4$; $\mathrm{H}, ~ 9.8 . \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{2}$ requires C , 80.4; $\left.\mathrm{H}, 9.8 \%\right) ; \delta_{\mathrm{H}}(600 \mathrm{M} \mathrm{Hz}$; CDCl_{3}) $1.19\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J} 12,2-\mathrm{H}_{\mathrm{A}}\right), 1.33(1 \mathrm{H}, \mathrm{brd}, \mathrm{J} 13,10-$ $\left.\mathrm{H}_{\mathrm{A}}\right), 1.40\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4\right.$ and $\left.12,7-\mathrm{H}_{\mathrm{A}}\right), 1.49(1 \mathrm{H}, \mathrm{br}$ dd, J 3 and 8, 9- H_{A}), 1.63-1.77 ($7 \mathrm{H}, \mathrm{m}$), 1.77-1.86 ($4 \mathrm{H}, \mathrm{m}$), 1.90-1.96 (4 H, m), 2.03-2.06(1 H, m, 7-H B), 2.08(1 H, t, J 6, ROH), 2.08$2.11(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 2.22(1 \mathrm{H}, \mathrm{br}$ q , J 6, 8-H) , 2.63-2.68(1 H , m, $3-\mathrm{H}), 2.75(1 \mathrm{H}, \mathrm{br}$ s, 6-H), $2.82(1 \mathrm{H}, \mathrm{br} \mathrm{s}, 3$ '- H), $2.91(1 \mathrm{H}, \mathrm{br}$ s, $\left.1^{\prime}-\mathrm{H}\right), 3.50-3.53\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.58-3.61(1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{\mathrm{A}} \mathrm{H}_{\mathrm{B}} \mathrm{OH}\right), 3.64-3.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{ROCH}_{2}\right), 4.31(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4$, $4-\mathrm{H}) ; \delta_{\mathrm{c}}\left(150 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 28.1,28.4,31.7$ (6-C), $32.4(8-\mathrm{C})$, 32.5 (3'-C), 32.7 (7-C), 33.0 (1'-C), 35.6 (1-C), 36.0 (2-C), 37.2 $\left(6^{\prime}-\mathrm{C}\right), 37.4$ (3-C), $38.4,38.9$ (10-C), 39.2, 39.4, 40.0, 42.6
(9-C), $62.4\left(\mathrm{CH}_{2} \mathrm{OH}\right), 68.6\left(\mathrm{ROCH}_{2}\right), 76.9(4-\mathrm{C}), 127.7\left(2^{\prime}-\mathrm{C}\right)$ and 146.3 (5-C).

Solvolysis kinetics

Solvolysis kinetics were followed using a Cary-3E UV-VIS spectrophotometer equipped with the Cary six cell Peltier constant temperature accessory. A stock solution of 1a-0 Ts in tetrahydrofuran ($5 \mu \mathrm{l} ; 22.8 \mathrm{~mm}$) was injected into an equilibrated solvent mixture ($3 \mathrm{~cm}^{3} ; 30 \mathrm{~min}$) and the change in absorbance at 232 nm was followed as a function of time. First-order rate constants for the solvolysis reactions were determined by a nonlinear least-squares fit to a standard first-order equation. All kinetic runs exhibited clean first-order behaviour for at least four half-lives of reaction.

Product studies

A solution of the tosylate $\mathbf{1 a - 0} \mathbf{~ T s ~ (1 0 0 ~ m g) ~ i n ~} 60 \%$ aqueous ethanol ($200 \mathrm{~cm}^{3}$) was heated to $75^{\circ} \mathrm{C}$ and allowed to react for 12 h , a reaction time that represented >20 half-lives for hydrolysis. The solvent volume was reduced and the products were extracted with ethyl acetate. A saturated solution of sodium hydrogen carbonate was used to wash the extract layer which was then dried and evaporated to dryness under reduced pressure. Flash chromatography using silica gel with ethyl acetate-hexane ($5-20 \% \mathrm{v} / \mathrm{v}$) as the eluent gave two separate products. One of the two products was identified as the rearranged ethyl ether 11-0Et ($58 \mathrm{mg}, 81.4 \%$), $\mathrm{mp} 69-70^{\circ} \mathrm{C}$ (Found: C, 84.5; $\mathrm{H}, 10.5 . \mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}$ requires $\mathrm{C}, 84.6 ; \mathrm{H}, 10.3 \%$); $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.18(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7), 1.20(1 \mathrm{H}, \mathrm{dd}), 1.30-1.40$ ($2 \mathrm{H}, \mathrm{m}$), $1.48(1 \mathrm{H}, \mathrm{dd}), 1.60-1.98(15 \mathrm{H}, \mathrm{m}), 2.05-2.16(2 \mathrm{H}$, $\mathrm{m}), 2.24(1 \mathrm{H}, \mathrm{br}$ q. J 6), 2.58-2.64 ($1 \mathrm{H}, \mathrm{m}$), $2.75(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $2.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.94(1 \mathrm{H}, \mathrm{br}$ s), $3.49(2 \mathrm{H}, \mathrm{m})$ and $4.28(1 \mathrm{H}, \mathrm{d}$, J 4); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right.$) $16.0,28.1,28.4,31.8,32.4,32.5$ (2 C), 32.7, 35.6, 36.0, 37.2, 37.7, 38.3, 38.9, 39.0, 39.2, 40.0, 42.6, $62.5,76.0,127.8,145.7 ; \mathrm{m} / \mathrm{z} 312\left(\mathrm{M}^{+}, 53.6\right), 313$ (14.4). The other product was identified as the rearranged alcohol $11-\mathbf{O H}$ ($10 \mathrm{mg}, 15.4 \%$), white solid, $\mathrm{mp} 96-98^{\circ} \mathrm{C}$ (Found: C, 84.2; H, 9.8. $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}$ requires $\left.\mathrm{C}, 84.45 ; \mathrm{H}, 9.9 \%\right) ; \delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right)$ 1.14-1.20 (1 H, m), 1.26-1.33 (2 H, m), 1.47-1.53 (2 H, m), 1.65-1.77 ($7 \mathrm{H}, \mathrm{m}$), 1.77-1.88 ($4 \mathrm{H}, \mathrm{m}$), 1.89-2.02 ($4 \mathrm{H}, \mathrm{m}$), 2.04-2.11 ($2 \mathrm{H}, \mathrm{m}$), 2.31 ($1 \mathrm{H}, \mathrm{br} \mathrm{q}, \mathrm{J} 6$), 2.50-2.58 ($1 \mathrm{H}, \mathrm{m}$), $2.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.81(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.98(1 \mathrm{H}, \mathrm{br}$ s) and $4.63(1 \mathrm{H}$, d, J 4); $\delta_{\mathrm{c}}\left(100 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 28.2,28.4,31.2,31.8,32.3,32.9$, 33.0, 35.3, 36.6, 37.1, 38.4, 38.7, 39.0, 39.9, 40.0, 40.2, 42.7, 69.8, 131.1, 145.7; m/z $284\left(\mathrm{M}^{+}, 27.7\right), 285\left(\mathrm{M}^{+}+1,6.0\right), 267$ $\left(\mathrm{M}^{+}-17,5.7\right), 175$ (100).

In a separate experiment, a solution of the tosylate $\mathbf{1 a - 0} \mathbf{~ T s}$ $(100 \mathrm{mg})$ in anhydrous ethanol $\left(10 \mathrm{~cm}^{3}\right)$ was heated in a C arius tube at $100^{\circ} \mathrm{C}$ for 30 h . The volume of the solvent was then reduced and the products were extracted with ethyl acetate The organic extract was washed with a saturated solution of sodium hydrogen carbonate, dried and evaporated to dryness under reduced pressure. F lash chromatography on silica gel with hexane as the eluent gave two separate products. The first product to elute from the column was identified as the rearranged alkene, $11-\mathrm{H}(21 \mathrm{mg}, 34 \%)$; $\mathrm{mp} 131-132^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 89.4 ; \mathrm{H}$, 10.5. $\mathrm{C}_{20} \mathrm{H}_{28}$ requires C, 89.5; $\left.\mathrm{H}, 10.5 \%\right)$; $\delta_{\mathrm{H}}\left(400 \mathrm{M} \mathrm{Hz} \mathrm{CDCl}_{3}\right)$ 1.29-1.36 (2 H, m), 1.38-1.45 (2 H, m), 1.57-1.95 (16 H, m), 2.01-2.07 ($2 \mathrm{H}, \mathrm{m}, 4_{\mathrm{A}}-\mathrm{H}$), $2.17(1 \mathrm{H}, \mathrm{br} \mathrm{q}, \mathrm{J} 7), 2.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 4$ and $\left.15,4_{\mathrm{B}}-\mathrm{H}\right), 2.37-2.45(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.72(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ and 2.78 ($2 \mathrm{H}, \mathrm{br}$ s); m/z 268 ($\mathrm{M}^{+}, 100 \%$), 269 (24.1), 270 (2.9). Comparison of the physical properties of the second eluting product with those of an authentic sample of $\mathbf{1 a - 0} \mathbf{E t}$ (vide supra) indicated that the product was $\mathbf{1 a - 0 E t}(48 \mathrm{mg}, 67 \%)$. When an analogous solvolysis experiment was performed with $\left[{ }^{2} \mathrm{H}_{1}\right]$ laOTs, the mono-deuteriated isotopomer of 11-H was formed. The deuteriated product showed the following differences from the non-deuteriated material in the ${ }^{1} \mathrm{H} N \mathrm{MR}$ spectrum: disappearance of the multiplet at 2.37-2.45; replacement of the broad quartet at 2.17 with a broad triplet; collapse of the
double doublet at $\delta 2.30$ to a doublet (J 15); and simplification of the multiplet at 2.01-2.07 to a doublet (J 15).

Product ratios

The relative proportions of the products generated from the solvolysis of 1a-0 Ts were determined by adding 1a-0 Ts (ca. 8 mg) to the appropriate aqueous ethanol solution $\left(30 \mathrm{~cm}^{3}\right)$, reacting the mixture for a minimum of 10 half-lives and extracting the resulting products from the aqueous solvent with dichloromethane ($2 \times 10 \mathrm{~cm}^{3}$). This organic layer was then washed with water, dried, evaporated to dryness under reduced pressure and the residue dissolved in $\mathrm{CDCl}_{3}\left(0.6 \mathrm{~cm}^{3}\right)$ and the solution filtered through a glass wool plug into a 5 mm NMR tube. The ${ }^{1} \mathrm{H} N \mathrm{M}$ R (400 M Hz) spectrum was acquired using a standard pulse sequence and the ratio of the alcohol (11-0 H) to the ether ($\mathbf{1 1 - 0 ~ E t}$) product was determined by integration of the two peaks at $\delta 4.63$ and 4.28 .

Stereochemical assignments

The C-C connectivity of the rearranged adamantyl ring system of the final product was assigned using a standard 2D INADEQUATE experiment which was performed on the product obtained from solvolysis of $\mathbf{1 a - 0} \mathbf{T s}$ in ethane 1,2 -diol. The alcohol 11-0CH2 $\mathbf{C H}_{2} \mathbf{O H}$ (120 mg) was dissolved in $\mathrm{CDCl}_{3}\left(1.5 \mathrm{~cm}^{3}\right)$ and this solution was filtered through a glass wool plug into a 10 mm NMR tube. The 2D INADEQUATE spectrum was acquired on a Bruker AMX-600 NMR spectrometer using a 10 mm broad-band probe. A cquisition parameters were set so that crosspeaks were observed between alkyl and allylic carbon atoms, but were not observed between alkene and allylic carbon atoms.

Conversion of $11-\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ to 11-0Et

The alcohol $11-\mathbf{O C H}_{2} \mathrm{CH}_{2} \mathrm{OH}$ (0.2 g) was added to a solution of tosyl chloride (0.4 g) in pyridine ($5 \mathrm{~cm}^{3}$) and stirred at room temp. for 24 h . Following the addition of ethyl acetate, the organic layer was extracted with dilute hydrochloric acid, water and saturated sodium hydrogen carbonate. The organic layer was dried and evaporated to dryness, the residue was purified using flash chromatography on silica gel with ethyl acetate-hexane ($5 \% \mathrm{v} / \mathrm{v}$) as the eluent to give the tosylate 11$\mathbf{O C H} \mathbf{C H}_{2} \mathbf{O} \mathbf{T s}$ as an oil (0.13 g); $\delta_{\mathbf{H}}\left(400 \mathrm{M} \mathrm{Hz} ; \mathrm{CDCl}_{3}\right) 1.15$ (1 $\mathrm{H}, \mathrm{dt}, \mathrm{J} 2$ and 12), 1.21-1.34 ($2 \mathrm{H}, \mathrm{m}$), $1.46(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 2.5$ and 11), 1.58-2.16 (18 H , m), 2.43 (3 H , s), 2.50-2.57 ($1 \mathrm{H}, \mathrm{m}$), 2.70 $(1 \mathrm{H}, \mathrm{br} s), 2.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.86(1 \mathrm{H}, \mathrm{br} s), 3.61(2 \mathrm{H}, \mathrm{dt}, \mathrm{J} 5$ and 1.5), $4.12(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 5), 4.26(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 4), 7.34(2 \mathrm{H}, \mathrm{m})$ and $7.80(2 \mathrm{H}, \mathrm{m})$. A ddition of the tosylate $\mathbf{1 1 - 0} \mathbf{C H}_{2} \mathrm{CH}_{2} \mathbf{O} \mathbf{T s}$ (0.05 g), with stirring, to a solution of sodium borohydride (0.1 g) in dimethyl sulfoxide $\left(4 \mathrm{~cm}^{3}\right)$, was followed by heating at $100^{\circ} \mathrm{C}$ for 16 h . Ethyl acetate was then added and the organic layer was extracted with water, dried and evaporated to dryness. Flash chromatography of the residue on silica gel with ethyl acetatehexane ($2 \% \mathrm{v} / \mathrm{v}$) as the eluent gave a colourless solid 11-0 Et $(0.023 \mathrm{~g})$ which had identical properties to the product 11-0 Et that was isolated from the solvolysis experiment.

Results

Preparation of the desired 'pseudo-axial' adamantylideneadamantyl tosylate ($\mathbf{1 a - 0 T s) ~ f r o m ~ a d a m a n t y l i d e n e a d a - ~}$ mantyl ketone ${ }^{\mathbf{3}}$ (10) followed the synthetic route outlined in Scheme 3.
Table 1 presents the observed rate constants for the solvolysis of the 'pseudo-axial' tosylate ($\mathbf{1 a - 0 T s}$) in ethanol-water mixtures.

R ate constants for the solvolysis of $\mathbf{1 a - 0} \mathbf{~ T s}$ at $25^{\circ} \mathrm{C}$ (Table 2) were estimated by extrapolation of the observed data using the Eyring equation $\left[\ln \left(\mathrm{k}_{\text {obs }} S T\right)=\ln \left(\mathrm{k}_{\mathrm{B}} / \mathrm{h}\right)-\Delta \mathrm{H}^{\ddagger} / R T+\Delta S^{\ddagger} / R\right]$. The calculated activation parameters for the solvolysis of 1aOTs in 80% aqueous ethanol are $\Delta \mathrm{H}^{\ddagger}=26.3 \pm 0.3 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\Delta S^{\ddagger}=-2.1 \pm 0.9 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}(1 \mathrm{cal}=4.184 \mathrm{~J})$.

Table 1 Observed first-order rate constants ($\mathrm{k}_{\text {obs }}$) for the solvolysis of $\mathbf{1 a - 0} \mathbf{T s}$ in aqueous ethanol solvent mixtures at various temperatures ${ }^{\text {a }}$

Solvent (\% ethanol)	$\mathrm{k}_{\text {obs }} / 10^{-5} \mathrm{~s}^{-1}$ at $60^{\circ} \mathrm{C}$	$\mathrm{k}_{\text {obs }} / 10^{-5} \mathrm{~s}^{-1}$ at $70^{\circ} \mathrm{C}$	$\mathrm{k}_{\text {obs }} / 10^{-5} \mathrm{~s}^{-1}$ at $80{ }^{\circ} \mathrm{C}$
80	1.35 ± 0.03	4.3 ± 0.3	13.6 ± 0.2
70	3.48 ± 0.07	10.7 ± 0.3	31 ± 1
60	7.1 ± 0.4	21.7 ± 0.1	62 ± 2
50	15.6 ± 0.1	46.4 ± 0.6	126 ± 2
40	42.8 ± 0.8	121 ± 1	310 ± 10

${ }^{\text {a }}$ The quoted values are the mean and the standard deviation from at least three independent kinetic runs.

Table 2 Calculated first-order rate constants $\left(\mathrm{k}_{\text {calc }}\right)$ for the solvolysis of $\mathbf{1 a - 0} \mathbf{T s}$ in aqueous ethanol solvent mixtures at $25^{\circ} \mathrm{C}$

Solvent (\% ethanol)	$\mathrm{k}_{\text {calc }} / 10^{-7} \mathrm{~s}^{-1}$
80	1.13
70	3.83
60	8.06
50	20.7
40	71.5

Scheme 3

When the data from Table 2 is fitted to the standard Grunwald-Winstein eqn. (1) using solvolysis data from

$$
\begin{equation*}
\log \left(\mathrm{k} / \mathrm{k}_{\text {80\%EtOH }}\right)=\mathrm{mY} \mathrm{OTS}_{\text {OTS }} \tag{1}
\end{equation*}
$$

2-adamantyl tosylate ${ }^{4}$ to generate $Y_{\text {отs }}$ values, m (the sensitivity parameter for the ionizing power of the solvent) is calculated to be 0.86 ± 0.05. A graph of the data and the computed linear fit is shown in Fig. 1.
Table 3 presents the calculated rate accelerations for the solvolysis of both 1a-0 Ts and $\mathbf{1 e}-\mathbf{O} \mathbf{T s}^{1}$ in ethanol-water mixtures with respect to the solvolysis rate for 2-adamantyl tosylate

D etermination of the tricyclic ring structure and the stereochemistry of the products involved 2D INADEQUATE, 2D HETEROCOSY and 2D NOESY NMR experiments run on the solvolysis product from the reaction of $\mathbf{1 a - O T s}$ in ethane-1,2-diol. The INADEQUATE spectrum revealed the carbon-

Table 3 Calculated rate accelerations for the reactions of 1a-0 Ts and le-OTs compared to the solvolysis of 2-adamantyl tosylate in aqueous ethanol solvent mixtures at $25^{\circ} \mathrm{C}$

Solvent (\% ethanol)	1a-0 Ts	1e-0 Ts
80	4.7	4.0×10^{5}
50	4.4	1.5×10^{5}

Fig. 1 Correlation of logarithms of solvolysis rates for 1a-0 Ts with Y ors. The displayed line is the calculated fit to the standard G runwaldWinstein equation.
carbon connectivities for $\mathbf{1 1 - 0} \mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{O H}$. The ${ }^{13} \mathrm{C}$ peak assignments are given in the Experimental section and the corresponding designations for the ring carbon atoms are shown as labels on structure 11. Several of the proton resonances observed in the ${ }^{1} H$ NMR spectrum (see Experimental section) of $11-\mathbf{O C H}_{2} \mathbf{C H}_{2} \mathbf{O H}$ are assigned based on a $2 \mathrm{D}{ }^{1} \mathrm{H}{ }^{13} \mathrm{C}$ HETEROCOSY spectrum. An observed cross-peak in the 2D N OESY spectrum, which showed that an N OE correlation exists between the proton on $\mathrm{C}-4(\delta 4.31)$ and one of the two protons ($\delta 1.19$) bound to $\mathrm{C}-2$, enabled the absolute stereochemistry of $11-\mathbf{O C H} \mathbf{C H}_{2} \mathbf{O H}$ to be assigned as shown in structure $\mathbf{1 1}$ ($\mathrm{L}=\mathrm{H}$). When the solvolysis reactions were performed with $\left[{ }^{2} \mathrm{H}_{1}\right]$ la-O Ts the corresponding products that formed were deuteriated on $\mathrm{C}-3$ (structure 11, $\mathrm{L}=\mathrm{D}$).

Reduction of the tosylate ($\mathbf{1 1}-\mathbf{O C H}_{2} \mathrm{CH}_{2} \mathbf{O} \mathbf{~ T s}$) formed from $11-\mathbf{O C H} \mathbf{C H}_{2} \mathbf{O H}$ gave an ethyl ether product which had an identical ${ }^{1} \mathrm{H} N M R$ spectrum to that of the major component isolated from the solvolysis experiments. Accordingly, the major solvolysis product was assigned the structure $11-0 \mathrm{Et}$. The minor solvolysis product formed in the aqueous ethanolysis of 1a-0 Ts was identified as $\mathbf{1 1 - 0} \mathbf{H}$ based on a comparison of the ${ }^{1} \mathrm{H}$ NMR spectra obtained from these two compounds. The partition ratio ($\mathrm{k}_{\mathrm{E}} / \mathrm{k}_{\mathrm{w}}$) for the formation of $\mathbf{1 1 - 0 \mathbf { H }}$ and 11OEt was calculated according to eqn. (2). A list of the derived ratios is presented in Table 4.

$$
\begin{equation*}
\frac{\mathrm{k}_{\mathrm{E}}}{\mathrm{k}_{\mathrm{w}}}=\frac{[\mathrm{HOH}][\mathrm{ROEt}]}{[\mathrm{EtOH}][\mathrm{ROH}]} \tag{2}
\end{equation*}
$$

Table 4 Comparison of the partition ratios $\left(k_{E} / k_{w}\right)$ observed in the solvolysis of 1a-OTs in aqueous ethanol with those for 1e-OTs, 2-adamantyl tosylate and 2-adamantyl perchlorate

Solvent (\% ethanol)	1a-0 Ts $^{\mathbf{a}}$	1e-0 Ts $^{\mathbf{b}}$	2-A damantyl tosylate $^{\mathbf{c}}$	2-A damantyl perchlorate $^{\mathbf{d}}$
90	-	0.43	0.49	0.64
80	$4.6^{\mathbf{e}}$	0.37	0.49	0.52
70	-	0.45	0.53	0.52
60	$19.3^{\mathbf{f , g}}$	0.56	$0.57^{\mathbf{f}}$	0.55
50	-	0.61	-	0.62

${ }^{a} \mathrm{k}_{\mathrm{E}} / \mathrm{k}_{\mathrm{w}}$ is a dimensionless ratio of second-order rate constants [see eqn. (2)]. ${ }^{\text {b }}$ R ef. 1 , at $25^{\circ} \mathrm{C} .{ }^{\mathrm{c}}$ R ef. 23, at $100^{\circ} \mathrm{C}$. ${ }^{\text {d }}$ R ef. 24 , at $25^{\circ} \mathrm{C}$. ${ }^{\mathrm{e}}$ Temperature $=100^{\circ} \mathrm{C}$. ${ }^{\text {f }}$ Temperature $=75^{\circ} \mathrm{C}$. ${ }^{g} \mathrm{~A}$ value of 11.5 was calculated from the isolated quantities of the two products when the solvolysis reaction was performed on 100 mg of $\mathbf{1 a - 0} \mathbf{~ T s}$ at $75^{\circ} \mathrm{C}$ (see Experimental section).

Table 5 Observed α-secondary deuterium kinetic isotope effects ($\mathrm{k}_{\mathbf{H}} / \mathrm{k}_{\mathrm{D}}$) for the solvolysis of 1a-0 Ts in aqueous ethanol solutions at various temperatures ${ }^{\text {a }}$

Solvent (\% ethanol)	$\mathrm{k}_{\mathbf{H}} / \mathrm{k}_{\mathbf{D}}$ at $60^{\circ} \mathrm{C}$	$\mathrm{k}_{\mathbf{H}} / \mathrm{k}_{\mathbf{D}}$ at $70^{\circ} \mathrm{C}$	$\mathrm{k}_{\mathbf{H}} / \mathrm{k}_{\mathbf{D}}$ at $80^{\circ} \mathrm{C}$
80	1.145 ± 0.021	1.132 ± 0.024	1.167 ± 0.024
60	1.142 ± 0.011	1.130 ± 0.016	1.125 ± 0.019

${ }^{\text {a }}$ The quoted values are the mean and the standard deviation from at least three independent kinetic runs.

Table 6 Observed α-secondary deuterium kinetic isotope effects $\left(\mathrm{K}_{\mathrm{H}} / \mathrm{K}_{\mathrm{D}}\right)$ for the solvolysis of $\mathbf{1 e}-\mathbf{0} \mathbf{T s}$ in aqueous ethanol solutions at $25^{\circ} \mathrm{C}^{\mathrm{a}}$

Solvent (\% ethanol)	$\mathrm{k}_{\mathbf{H}} / \mathrm{k}_{\mathbf{D}}$
100	1.155 ± 0.034
90	1.147 ± 0.005
80	1.158 ± 0.012
70	1.167 ± 0.016
60	1.149 ± 0.022
50	1.144 ± 0.006

a The quoted values are the mean and the standard deviation from at least three independent kinetic runs.

Ethanolysis of 1a-0 Ts under more drastic conditions generated two new products rather than the expected 11-0 Et. These new products are the result of acid-catalysed reactions of 11$\mathbf{0} \mathbf{E t}$, with the acid component, tosic acid, originating from the initial solvolysis reaction. One of these two new products was shown to be the 'pseudo-axial' ethyl ether 1a-0Et, while the second product was identified as the reduced, rearranged alkene 11-H.
Tables 5 and 6 present the α-secondary deuterium kinetic isotope effects (k_{H} / k_{D}) observed for, respectively, the solvolysis of $\mathbf{1 a} \mathbf{- 0} \mathbf{T s}$ in aqueous ethanol solvent mixtures at various temperatures and the corresponding reactions performed with le- 0 Ts at $25^{\circ} \mathrm{C}$.

Discussion

Rate data (Table 2) generated from the solvolysis of $\mathbf{1 a - 0} \mathbf{T s}$ were analysed using the standard G runwald-W instein eqn. (1). The standard form of the Grunwald-W instein equation was utilized in these studies based on the assumption that, during the solvolysis of sterically crowded adamantyl systems, negligible nucleophilic assistance to ionization is provided by the solvent. ${ }^{5,6}$ A queous ethanolysis of the 'pseudo-axial' tosylate ($\mathbf{1 a - 0} \mathbf{~ T s}$) displayed an m value of 0.86 ± 0.05, a value which is greater than the corresponding value of 0.65 ± 0.01 obtained for analogous reactions with $\mathbf{1 e - 0} \mathbf{T s} .{ }^{1}$ Small m values (<1)
obtained from solvolysis reactions of sterically crowded compounds are consistent with the occurrence of either σ - or π bond participation during the rate-limiting ionization of the carbon-nucleofuge bond. ${ }^{7}$ In a previous study, an m value of 0.65 for the solvolysis of $\mathbf{1 e} \mathbf{- 0} \mathbf{~ T s}$ was interpreted to mean that there is a large degree of π-bond participation at the reaction transition state and that such solvolysis reactions probably proceed through solvent-equilibrated ions. ${ }^{1}$ In a related study on the aqueous ethanolysis of $\mathbf{l e}-\mathbf{B r}$, a common-ion rate depression was observed when bromide ions were added to the reaction medium. ${ }^{8}$ This observation is consistent with the formation of solvent-equilibrated ions. ${ }^{9}$ When compared to leOTs, the larger m value obtained for the solvolysis reactions of 1a-OTs indicates that solvation of the developing positive charge at the transition state is more important for reactions involving $\mathbf{1 a - 0}$ Ts than in the corresponding reactions of $\mathbf{l e}$ 0 Ts. Thus, solvolysis of 1a-0 Ts must proceed with less charge dispersal at the transition state than does solvolysis of $\mathbf{1 e}-\mathbf{O T s}$ and, as a consequence, σ-bond participation during the $1 \mathrm{a}-0 \mathbf{T s}$ reaction is less effective at stabilizing the developing charge than is the π-bond participation in the solvolysis of $\mathbf{l e}-\mathbf{0} \mathbf{T s}$.

Solvolysis products

The data from Table 3 indicate that the observed solvolysis rates for the adamantylideneadamantyl tosylates $\mathbf{1 a - 0} \mathbf{T s}$ and le-0 Ts are governed by the stereochemical orientation of the double bond with respect to the nucleofugic tosylate. Aque ous ethanolysis reactions of la-OTs produce the skeletally rearranged products $11-\mathbf{O H}$ and 11-0Et as initial products ($>95 \%$), whereas the analogous solvolysis reactions of le-0 Ts yield products that arise from complete retention of configuration. ${ }^{1,1}$ The initial solvolysis products of 1a-0 Ts have partition ratios $\left(k_{E} / k_{w}\right)$ which are much greater than unity (Table 4). In general, values of this magnitude are considered to arise when nucleophilic attack occurs on solvent-equilibrated ions. ${ }^{11}$ In this case, the large partition ratios are consistent with the formation of a solvent-equilibrated allylic carbenium ion intermediate (5-Ad). \ddagger

When 1a-0 Ts is heated in acidic ethanol for an extended period of time, the initial solvolysis product (11-0Et) undergoes a further reaction and is replaced by two new products 1a$\mathbf{0 E t}$ and 11-H. The acid-catalysed reaction of 11-0 Et reforms the carbenium ion $\mathbf{5 - A d}$, which can then react in three possible ways. A s is shown in Scheme 4, 5-A d can: (a) undergo solvent

capture to yield the allylic protoadamantyl product 11-0Et; (b) undergo rearrangement of the protoadamantyl ring system followed by stereospecific solvent capture to yield $\mathbf{1 a - 0} \mathbf{E t}$; or (c) abstract a hydride ion, presumably from ethanol, to give the
\dagger Similar results were reported by Winstein and co-workers for the acetolysis reactions of anti- and syn-7-norbornenyl tosylates. ${ }^{10}$ $\ddagger \mathrm{A}$ value of 11.5 for $\mathrm{k}_{\mathrm{E}} / \mathrm{k}_{\mathrm{w}}$ corresponds to 84.1% of the product being the ethyl ether, while a value of 19.3 corresponds to 89.9% of ether product (see Table 4).
reduced compound 11-H and acetaldehyde§ as products. In aqueous ethanol the allylic carbenium ion 5-Ad partitions predominantly to the protoadamantyl compounds $11-\mathbf{O H}$ and $11-0 \mathrm{Et}$, as is shown by the kinetic products of this solvolysis reaction. In contrast, the much slower process of solvent capture to form the thermodynamically more stable adamantyl compounds can only be observed when the reaction conditions are such that formation of the protoadamantyl compounds $11-0 \mathrm{H}$ and 11-0Et from the carbenium ion $5-\mathrm{Ad}$ is reversible. 1

N ature of the σ-bond interaction

An $S_{N} 1\left(D_{N}+A_{N}{ }^{12}\right)$ solvolysis reaction that involves a substrate modified to contain a non-interacting homoallylic double bond is expected to exhibit a rate decrease of ca. 150 when compared to the same reaction carried out with the fully saturated compound. ${ }^{13} \mathrm{An}$ estimated decrease in rate of this magnitude was calculated from the solvolysis rates obtained for the two bicyclo[2.2.2]octan-1-yl trifluoromethanesulfonate (Trf) $\mathbf{1 2}$ and 13 , each of which was reacted at $25^{\circ} \mathrm{C}$ in $80 \% \mathrm{v} / \mathrm{vEtOH}$ $\mathrm{H}_{2} \mathrm{O} .{ }^{13}$ In an analogous experiment, a 26 -fold decrease in rate was observed when solvolysis reactions involving the two homoadamantyl tosylates $\mathbf{1 4}$ and $\mathbf{1 5}$ were carried out at $75^{\circ} \mathrm{C}$ in $70 \% \mathrm{v} / \mathrm{vEtOH}-\mathrm{H}_{2} \mathrm{O} .{ }^{14}$

The observed rate acceleration for the solvolysis reactions of $\mathbf{1 a}$ - $\mathbf{0}$ Ts relative to those of 2 -adamantyl tosylate (Table 3), indicated the occurrence of σ-bond participation during the rate determining step of $\mathbf{1 a}-\mathbf{0} \mathbf{T s}$ solvolysis. In addition, these reactions yield only rearranged products, indicating that σ bond participation generates the allylic carbenium ion 5-Ad as the first-formed intermediate in the solvolysis reactions of 1aOTs. If the carbenium ion 4-Ad were an intermediate in the solvolysis reactions of 1a-0Ts, conversion of this species into the solvent-equilibrated carbenium ion 3-Ad should occur more rapidly than the corresponding interconversion of $4-\mathrm{CH}_{2}$ into $\mathbf{3}-\mathrm{CH}_{2}$, since the stability of bicyclobutenium ions (3) increases dramatically upon alkyl substitution. An activation energy of $8.5 \mathrm{kcal} \mathrm{mol}^{-1}$ has been calculated for the interconversion of the two, unsubstituted, isoenergetic secondary adamantyl cations. ${ }^{15}$ Consequently, the thermodynamically favourable interconversion of 4-Ad into 3-Ad should proceed with a lower activation energy.

Conversion of the carbenium ion 4-Ad into the bicyclobutenium ion 3-Ad which reacts with solvent to give exclusively 'pseudo-equatorial' products would result in solvolysis products having an inverted configuration. ${ }^{1}$ Therefore, the reaction of 5-Ad with ethanol to give la-0Et (or with water to give la-OH) cannot proceed via 4-Ad as a solvent-equilibrated carbenium ion, since this ion would be expected to yield some $\mathbf{l e - 0 E t}$ (or $\mathbf{l e - 0 H}$) product. It is more likely that rearrangement of the solvent-equilibrated allylic carbenium ion to reform the adamantyl ring system occurs with solvent participation to give 1a-OEt or 1a-OH directly.
The activation parameters for the solvolyses in 80% aqueous
§No attempt was made to isolate and quantify the acetaldehyde product.
If A similar set of observations were made in aqueous dioxane: 1a-0 Ts gave only 11-0 H when NaHCO_{3} was added to neutralize the tosic acid formed in the reaction mixture and, in the absence of added NaHCO_{3}, prolonged heating gave $\mathbf{1 a - 0 H}$.
ethanol of $\mathbf{l a - O T s}, \mathbf{l e - O T s} \mathbf{s}^{\mathbf{1}}$ and 2-adamantyl tosylate\| $\boldsymbol{1}^{16}$ are, respectively, $\Delta \mathrm{H}^{\ddagger}=26.3,19.2$ and $26.9 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\Delta S^{\ddagger}=-2.1,-3.4$ and $-3.0 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$. From this information it is clear that the different types of bond participation encountered in the solvolyses of $\mathbf{1 a - 0} \mathbf{T s}$ and $\mathbf{1 e - 0} \mathbf{T s}$ cause no significant entropic effects for the three secondary adamantyl tosylates. R ather, the various rates are controlled mainly by the enthalpic component of these $D_{N}+A_{N}$ reactions, a contribution which is, to some degree, related to the ability of the different molecular orbitals to provide assistance to ionization.

Comparison of methylidene and adamantylidene derivatives

The 'pseudo-equatorial', substituted adamantyl tosylates leOTs and 2e-0Ts display a reactivity difference of approximately 1.3×10^{5}-fold at $25^{\circ} \mathrm{C}$ in methanol,**,1,2 while the corresponding ratio for the epimeric 'pseudo-axial' tosylates 1a-0 Ts and 2a-0 Ts measured at $25^{\circ} \mathrm{C}$ in, respectively, 80% ethanol-water and in methanol, is 89 -fold. ${ }^{2}$ These observations indicate that the more electron-rich double bonds of the adamantylidene compounds $\mathbf{1 a - 0} \mathbf{T s}$ and $\mathbf{l e}-\mathbf{0} \mathbf{T s}$ support greater σ - and π-bond participation, respectively, at their individual transition states than do the corresponding methylidene adamantyl tosylates 2a-OTs and 2e-OTs. The observed reactivity difference is largest when the more electron-rich homoallylic π-bond interacts directly with the developing p orbital at the reaction centre. Furthermore, the reactions of 1a-0 Ts lead directly to the formation of the carbenium ion 5-Ad, whereas the data for 2a-0Ts is consistent with the formation of two rapidly equilibrating ions $4-\mathrm{CH}_{2}$ and 5 CH_{2} (vide supra).

Kinetic isotope effects

Both α - and β-secondary deuterium kinetic isotope effects (SD K IEs) have been used to probe the mechanism of solvolysis reactions. ${ }^{18}$ To be useful as a diagnostic tool the maximum possible value of $\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}$ should be known. For the solvolysis of secondary alkyl sulfonates, the upper limit for an α-SDK IE is approximately 1.22 at $25^{\circ} \mathrm{C} .{ }^{19} \mathrm{~A} n \alpha$-SD K IE value of this magnitude has been interpreted to indicate the involvement of ratedetermining separation of an intimate ion-pair during the solvolysis of secondary alkyl tosylates. ${ }^{20}$ Two independent studies observed that the α-SDKIE for the solvolysis of 2-adamantyl sulfonates is ca. 1.22 at $25^{\circ} \mathrm{C} .{ }^{21} \mathrm{C}$ onsistent with the interpretation that separation of an intimate ion-pair is rate-determining is the independent observation that extensive oxygen scrambling occurs to ${ }^{18} 0$-labelled 2 -adamantyl tosylate recovered from solvolytic medium. ${ }^{22}$ The adamantylidene substituted 2-adamantyl sulfonate $1 \mathrm{e}-\mathbf{O}$ Ts exhibits an α-SDKIE in the range $1.14-1.17$ at $25^{\circ} \mathrm{C}$ for aqueous ethanolysis, while the epimerictosylate 1a-0 Ts displaysan α-SD K IE of $1.16 \pm 0.02 \dagger \dagger$ for solvolysis in $60 / 40 \mathrm{v} / \mathrm{vEtOH}: \mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. Although these two secondary sulfonates are markedly contrasting in solvolytic reactivity as a result of differing degrees of participation, the measured α-SDKIEs are experimentally indistinguishable. Therefore, for these ionization reactions, the magnitude of an α SDKIE is not a reliable predictor of the presence or absence of either σ - or π-type participation occurring during the ratelimiting step of the reaction.

C onclusions

A four- to five-fold rate acceleration occurs for the solvolysis reactions of the 'pseudo-axial' adamantylideneadamantyl

[^1]tosylate when compared to the solvolysis of 2-adamantyl tosylate The reactions involve σ-participation of the antiperiplanar $\mathrm{C}-\mathrm{C} \sigma$-bond into the nascent p -orbital at the developing carbenium ion centre yielding a solvent-equilibrated allylic carbenium ion as the first-formed intermediate

Acknowledgements

We gratefully acknowledge the NSERC (Canada) and Simon Fraser University for financial support of this work. We also thank DrT. E. K itos for helpful editorial and stylistic suggestions relevant to the preparation of this manuscript.

References

1 X. H uang and A. J. Bennet, J. Chem. Soc., Perkin Trans. 2, 1994, 1279.

2 (a) K. Takeuchi, Y. Kurihara, T. K itagawa and T. K inoshita, C hem. Lett., 1993, 1981; (b) K. Takeuchi, Y. K urihara, T. Okazaki, T. K itagawa and T. K inoshita, J. P hys. Org. Chem., 1994, 7, 455.

3 X. H uang, R. J. Batchelor, F. W. B. E instein and A. J. Bennet, J. Org. Chem., 1994, 59, 7108.
4 (a) T. W. Bentley and G. E. Carter, J. Org. Chem., 1983, 48, 579; (b) D. T. Stoeling and V. J. Shiner, J.., J. A m. Chem. Soc., 1993, 115, 1695.

5 (a) J. L. Fry, C. J. Lancelot, L. K. M. Lam, J. M. Harris, R. C. Bingham, D. J. Raber, R. E. H all and P. v. R. Schleyer, J. A m. C hem. Soc., 1970, 92, 2538; (b) J. L. Fry, J. M . H arris, R. C. Bingham and P. v. R. Schleyer, J. A m. Chem. Soc., 1970, 92, 2540; (c) P. v. R. Schleyer, J. L. Fry, L. K. M . Lam and C. J. Lancelot, J. A m. Chem. Soc., 1970, 92, 2542.
6 For recent discussions on the use of the extend Grunwald-W instein equation see, (a) T. H . L owry and K . S. Richardson, M echanism and Theory in Organic Chemistry, H arper \& Row, N ew York, 3rd edn., 1987, p. 335; (b) C. D. Richie, Physical Organic Chemistry: The Fundamental C oncepts, M arcel D ekker, N ew York, 2nd edn., 1990, p. 66; (c) N. S. I saacs, P hysical Organic Chemistry, Longman, N ew York, 2nd edn., 1995, p. 214.
7 (a) S. G. Smith, A . H. Fainberg and S. Winstein, J. A m. Chem. Soc., 1961, 83, 618; (b) A. D iaz, I. L azdins and S. Winstein, J. A m. Chem. Soc., 1968, 90, 6546.

8 X. H uang, K. S. E. Tanaka and A. J. Bennet, unpublished work.
9 (a) S. Winstein, E. Clippinger, A . H. Fainberg and G. C. Robinson, J. Am. Chem. Soc., 1956, 78, 328; (b) S. Winstein, P. E. K linendinst and G. C. Robinson, J. A m. Chem. Soc., 1961, 83, 885
10 (a) S. Winstein, M. Shatavsky, C. N orton and R . B. Woodward, J. Am. Chem. Soc., 1955, 77, 4183; (b) S. Winstein and M. Shatavsky, J. A m. Chem. Soc., 1956, 78, 592; (c) S. Winstein and E. T. Stafford, J. A m. C hem. Soc., 1957, 79, 505.

11 R. Ta-Shma and Z. Rappoport, Adv. Phys. Org. Chem., 1992, 27, 239.

12 (a) Commission on Physical Organic Chemistry, P ure A ppl. Chem., 1989, 61, 23; (b) R. D. G uthrie and W. P. Jencks, Acc. Chem. R es., 1989, 22, 343.
13 M. Yoshida and K. Takeuchi, J. Org. C hem., 1993, 58, 2566.
14 J. M. H arris, J. R. M offatt, M. G. Case, F. W. Clarke, J. S. Polley, T. K. J. M organ, T. M . Ford and R. K . M urray, J r., J. Org. Chem., 1982, 47, 2740
15 R. Dutler, A. Rauk, T. S. Sorensen and S. M. Whitworth, J. Am. Chem. Soc., 1989, 111, 9024
16 T. W. Bentley and P. v. R. Schleyer, J. A m. Chem. Soc., 1976, 98, 7658.

17 C. A . Grob, G. Wittwer and K . R . R ao, H elv. Chim. A cta, 1985, 68, 651.

18 L. M elander and W. H. Saunders, J r., Reaction Rates of I sotopic M olecules, Wiley, Chichester, 1980, p. 170.
19 (a) V. J. Shiner, J r., and W. D owd, J. Am. C hem. Soc., 1971, 93, 1029; (b) V. J. Shiner, J r., M. W. Rapp, E. A. H alevi and M. Wolfsberg, J. A m. C hem. Soc., 1968, 90, 7171.

20 (a) V. J. Shiner, J r., R . D. Fisher and W. D owd, J. A m. Chem. Soc., 1969, 91, 7748; (b) V. J. Shiner, J r., D. A . N ollen and K . J. H umski, J. Org. Chem., 1979, 44, 2108.

21 (a) J. M. H arris, R. E. H all and P. v. R. Schleyer, J. Am. Chem. Soc., 1971, 93, 2551; (b) V. J. Shiner, J r. and R. D. F isher, J. A m. Chem. Soc., 1971, 93, 2553.
22 (a) C. Paradisi and J. F. Bunnett, J. A m. C hem. Soc., 1981, 103, 946; (b) C. Paradisi and J. F. Bunnett, J. A m. C hem. Soc., 1985, 107, 8223.

23 Y. K arton and A. Pross, J. C hem. Soc., Perkin Trans. 2, 1978, 595.
24 D. N. K evill, M. S. Bahari and S. W. A nderson, J. A m. Chem. Soc., 1984, 106, 2895.

Paper 6/05593A
R eceived 12th A ugust 1996
A ccepted 17th D ecember 1996

[^0]: * Tel (604)-291-3532, Fax (604)-291-3765, e-mail: bennet@ sfu.ca

[^1]: $\|$ Grob et al. ${ }^{17}$ measured the activation parameters for 2-adamantyl tosylate as $\Delta H^{\ddagger}=27.1 \mathrm{kcal} \mathrm{mol}^{-1}$ and $\Delta \mathrm{S}^{\ddagger}=-2.4 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$.
 ** The difference in solvolytic rate constants is 2.1×10^{5} for the reaction of $\mathbf{1 e - 0} \mathbf{T s}$ in 80% ethanol-water and the reaction of $\mathbf{2 e - 0} \mathbf{~ T s}$ in methanol at $25^{\circ} \mathrm{C}$.
 $\dagger \dagger$ Estimated using the relationship $T \ln \left(\mathrm{k}_{\mathbf{H}} / \mathrm{k}_{\mathrm{D}}\right)=$ constant.

